博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 1129:Channel Allocation 四色定理+暴力搜索
阅读量:6876 次
发布时间:2019-06-26

本文共 3718 字,大约阅读时间需要 12 分钟。

Channel Allocation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 13357   Accepted: 6836

Description

When a radio station is broadcasting over a very large area, repeaters are used to retransmit the signal so that every receiver has a strong signal. However, the channels used by each repeater must be carefully chosen so that nearby repeaters do not interfere with one another. This condition is satisfied if adjacent repeaters use different channels. 
Since the radio frequency spectrum is a precious resource, the number of channels required by a given network of repeaters should be minimised. You have to write a program that reads in a description of a repeater network and determines the minimum number of channels required.

Input

The input consists of a number of maps of repeater networks. Each map begins with a line containing the number of repeaters. This is between 1 and 26, and the repeaters are referred to by consecutive upper-case letters of the alphabet starting with A. For example, ten repeaters would have the names A,B,C,...,I and J. A network with zero repeaters indicates the end of input. 
Following the number of repeaters is a list of adjacency relationships. Each line has the form: 
A:BCDH 
which indicates that the repeaters B, C, D and H are adjacent to the repeater A. The first line describes those adjacent to repeater A, the second those adjacent to B, and so on for all of the repeaters. If a repeater is not adjacent to any other, its line has the form 
A: 
The repeaters are listed in alphabetical order. 
Note that the adjacency is a symmetric relationship; if A is adjacent to B, then B is necessarily adjacent to A. Also, since the repeaters lie in a plane, the graph formed by connecting adjacent repeaters does not have any line segments that cross. 

Output

For each map (except the final one with no repeaters), print a line containing the minumum number of channels needed so that no adjacent channels interfere. The sample output shows the format of this line. Take care that channels is in the singular form when only one channel is required.

Sample Input

2A:B:4A:BCB:ACDC:ABDD:BC4A:BCDB:ACDC:ABDD:ABC0

Sample Output

1 channel needed.3 channels needed.4 channels needed.

题意是给了一堆的信号辐射塔,然后给了各个塔之间的关系,A:BCD代表A与B塔,A与C塔,A与D塔相邻,这样的话A就不能与B、C、D塔中的任何一个使用相同的辐射频率。问在给定关系的情况下,最少使用多少种辐射频率。

和小时候接触的世界地图的染色方案一样,相邻国家不能使用同一种颜色。这样最多就4种颜色。

这道题折磨了我颇久,用dfs一直不对,结果看了discuss发现顺序染色是不对的。

看给定数据:

6A:BEFB:ACC:BDD:CEFE:ADFF:ADE
3 channels needed.即:A(1)B(2)C(3)D(1)E(2)F(3)
贪心做法是不对的,还是暴力搜吧,反正一共就26个点,四种颜色换着法地涂,看最后最少能用多少种颜色。

代码:

#include 
#include
#include
#include
#include
#include
#pragma warning(disable:4996)using namespace std;int n, maxn;string test;int grid[30][30];void dfs(int step,int color[], int cap){ if (step == n ) { maxn = min(maxn, cap); return; } int i, j; for (i = 1; i <= 4; i++)//根据四色定理可知,一共四种颜色。所以暴力搜索,把所有符合条件的颜色都染着试一下 { for (j = 0; j < 26; j++) { if (grid[step][j] == 1 && color[j] == i) break; } if (j == 26)//如果这个颜色符合条件 { color[step] = i; dfs(step + 1, color, max(cap, i)); color[step] = 0; } }}int main(){ int i, j, k, len; int color[30]; while (cin >> n) { if (n == 0) break; memset(grid, 0, sizeof(grid)); memset(color, 0, sizeof(color)); maxn = 10; for (i = 0; i < n; i++) { cin >> test; len = test.length(); if (len == 2) continue; k = test[0] - 'A'; for (j = 2; j < len; j++) { grid[k][test[j] - 'A'] = 1; grid[test[j] - 'A'][k] = 1; } } dfs(0,color,0); if (maxn == 1) { cout <<"1 channel needed." << endl; } else { cout << maxn <<" channels needed. "<< endl; } } return 0;}

版权声明:本文为博主原创文章,未经博主允许不得转载。

转载于:https://www.cnblogs.com/lightspeedsmallson/p/4899596.html

你可能感兴趣的文章
团队进展报告(3)
查看>>
沈阳市房地产市场信息系统数据容灾与异地备份
查看>>
nlp Task2
查看>>
我的友情链接
查看>>
简单干净的C#方法设计案例:SFCUI.AjaxLoadPage()之一
查看>>
XMPP协议的原理介绍
查看>>
Undo管理
查看>>
jsp简易留言板
查看>>
3.15好水指数N1能否让饮水健康不失控?
查看>>
Linux防火墙的设置
查看>>
人人商城PHP网站打开网页空白
查看>>
redhat修改源
查看>>
ruby 访问权限
查看>>
linux磁盘管理命令--df
查看>>
cocos2d: 单击,双击,及双指捏合事件的判断
查看>>
读书笔记《unix系统编程》-第2章 文件
查看>>
统一日志平台-搭建
查看>>
项目经理,不要迷信制度!
查看>>
NDK如何集成libiconv
查看>>
我的友情链接
查看>>